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Abstract—This paper presents a diagnosis model-based method to analyse fault 

discriminability and assess diagnosability. The technique is based on the state space 

representation of quasi-static models. Fault diagnosabilty characterises the faults that 

can be discriminated using the available sensors in a system. The method can be used to 

select the minimum set of sensors that guarantee discriminability of an anticipated set of 

faults. The approach is applied on a two-tanks system benchmark and compared to a 

diagnosability analysis method based on structural analysis.  
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1. INTRODUCTION 

Safety, availability and reliability of processes are among the main objectives in system 

automatization. These characteristics can be greatly enhanced by the very early 



 

 

 

diagnosis of changes in component efficiencies. For this reason, diagnosability analysis 

and methods for locating the required sensors in a plant have gained much industrial 

interest. There is significant amount of work dealing with this topic in the scientific 

community [1, 2, 3, 4, 5]. 

To analyse system diagnosability, techniques arising from model based fault diagnosis 

can be used. The term model based fault diagnosis refers to the fact that the knowledge 

about the system is represented in an explicit model.  

Two research fields have developed model-based diagnosis independently: the DX 

community rooted in artificial intelligence (AI) and the FDI community rooted in 

control. The work of this article is influenced by ideas from both fields. A comparative 

study of the DX and FDI approaches to model based diagnosis has been presented in 

[6]. 

In the FDI community, faults are modelled as deviations of parameter values or 

unknown signals and the diagnostic models are often brought back to a residual form. 

Residual quantities are zero in the absence of faults and each residual acts as an alarm 

that is expected to trigger to a non-zero value upon the occurrence of some faults, in 

which case the residual is said to be sensitive to these faults. The expected triggering 

pattern(s) of a set of residuals under some fault is interpreted as the signature of the 

fault. Fault isolation is performed by checking the observed residual pattern against the 

different fault signatures [9]. The main approaches to construct residuals are the parity 

space approach based on Analytical Redundancy Relations (ARRs) [7], and the 

observer based approach [8].  



 

 

 

In the DX community a plant is assumed to be composed by a set of components that 

may fail. A diagnostic model describes the behaviour of each component and its 

interconnections. This model can be used to make predictions about the system 

behaviour. An inconsistency between the predictions and the observations can be 

interpreted as a conflict among the set of components whose behavioural model is 

involved in the inconsistent prediction. All the components in a conflict cannot behave 

normally. Diagnoses can be computed from conflicts [6].  

In this article, a new model based method to evaluate the degree of diagnosability of a 

system or equivalently the number of faults that can be discriminated is presented. The 

method can be used for proposing the (minimal) set of sensors that result in maximal 

discriminability for the system. The approach gives a new formulation of the FDI 

problem for systems that can be represented by a quasi-static model (QSM) in state 

space form. The method is applied to the two-tanks benchmark and compared to the 

structural model based diagnosability analysis method of [14]. 

The paper is organised as follows. Section 2 deals with the definitions of diagnosability. 

Section 3 introduces diagnosability analysis using QSMs.  Diagnosability analysis 

following a structural approach is considered in Section 4. Section 5 presents the QSM 

method applied to the two-tanks system and the comparison to the structural analysis 

method. Finally, some conclusions end the paper in Section 6. 

2. DIAGNOSABILITY AND SENSOR LOCATION CONCEPT 

  



 

 

 

Following the definitions given by [7], a dynamical system, defined by a system model 

with a set of measured variables (Y), input variables (U) and a set of disturbances (N) is 

subjected to some faults (F).  

 

Fig. 1. Fault diagnostic 

 

The set of observed variables is given by: Z={U, Y}, which consists of the temporal 

sequences of input and output values at discrete time points k within a given time 

horizon kh: 

U = {u(0), u(1), ….,u(kh)} 

Y = {y(0), y(1), ….,y(kh)} 

The unknown variables considered are internal variables, X, and perturbations, N. 

A fault in a dynamic system is an alteration of the system structure or the system 

parameters values from the nominal situation [1]. A fault may manifest as an 

unexpected deviation from the normal behaviour of one or more components of the 



 

 

 

system. Two kinds of faults are considered depending on how they affect the model 

behaviour: 

 - Multiplicative faults: system parameters take values different from nominal ones; 

- Additive faults: unknown variables act in an additive way on the sensors and actuators. 

For a given system model that describes the normal behaviour of the system subjected 

to faults F={f1, f2, …fnf}, the objective of diagnosis algorithms is to identify the set(s) of 

faults Fj ⊆ F that explain(s) the unexpected behaviour of the system. Diagnosis 

algorithms for continuous variable systems generally consist of two steps:  

- Fault detection, which decides whether or not a fault has occurred.  

- Fault isolation, which localises the faulty component(s). 

This is conditioned by the diagnosability properties of the system, which define whether 

or not faults are discriminable. Given the set of observed variables { }1
, ,

nz
Z z z= L  the 

set of all the possible value tuples for Z under the fault fi is defined as 
if

OBS . Then two 

faults fi and fj, i jf f! , are said to be weakly discriminable1 if and only if 

i jf fOBS OBS! . 

In [11, 14] the Diagnosability Degree of an instrumented system is characterized by the 

quotient of the number of discriminable faults by the number of faults in F, Card(F).  

 

1 Strong diagnosability requires 
i jf fOBS OBS! ="  



 

 

 

Definitions 1 and 2, already present in the literature, will be useful through the paper.  

Definition 1 (Full Diagnosability). A system is fully diagnosable if all possible 

hypothesized single faults F are discriminable.  

In other words, for a given set of observed variables Z, a system is fully diagnosable if 

ji
f fOBS OBS! , i jf f! . 

The sensor placement problem searches for the subset of unknown variables, X*⊂X, 

such that X*∪Za, makes the system fully diagnosable. Za is the set of current known 

variables. 

Definition 2 (Minimum Sensor placement). A Minimal Additional Sensor Set (MASS) 

is defined as a minimum set of variables X* whose observation turns the system fully 

diagnosable. 

Since X* has not necessarily only one solution, a minimum cost function system-sensor 

can be included in order to select the best MASS X*. 

3. DIAGNOSABILITY ANALYSIS USING QUASI-STATIC MODELING 

3.1 Quasi-static Model (QSM) 

Let us have a linear state space representation of a discrete system. Difference equations 

for such systems are: 

 
1X k AX k BU k

Y k CX k DU k

+ = +

= +

( ) ( ) ( )

( ) ( ) ( )
  (3.1) 



 

 

 

In control theory, a complex system can be modelled by mixed dynamic and algebraic 

equations system. Quasi-static models are a state space representation that includes both 

types of models, dynamic and algebraic. The dynamic is for slow variables and the 

algebraic is for fast ones2.  

Quasi-static models are often used in water networks [13] where reservoirs have a time 

constant much higher than the sampling period and are modelled with discrete dynamic 

system. On the other hand, pipes, pumps and valves are considered through algebraic 

equations.  

The general representation of a quasi-static model is an extension of state space model 

(3.1). The set of internal variables n
X !"  is partitioned in 1

1

n
X !" , set of dynamic 

variables, and 2

2

n
X !" , set of static variables. The set of observed variables is 

composed by nu
U !" , set of inputs- and ny

Y !" , set of outputs. The set of observed 

variables Y is partitioned in dynamic observed variables 1

1

ny
Y !"  and static observed 

ones 2

2

ny
Y !" , 

1 2
Y Y Y= ! . QSM is then represented by: 

 

( ) [ ]
( )
( )

( )

( )

( )
( )

( )
( )

( )

1

1 11 12 1

2

2 1
21 22 2

1

1 11 12 1

2

2 21 22 2

1

0
n

X k
X k A A BU k

X k

A A B
X k

Y k C C D U k
X k

Y k C C D

!

" #
+ = +$ %

& '

" # " # " #
$ % " #$ % $ %

= +$ % $ %$ % $ %
& '$ % $ % $ %& ' & '& '

 (3.2) 

 

2 Slow and fast variables are defined by comparing time constants and sampling period. 



 

 

 

where 1 1

11

n n
A

!"# , 1 2

12

n n
A

!"#   and 1

1

n nu
B

!"#  are the matrices corresponding to 

discrete dynamic equations, 2 1

21

n n
A

!"# , 2 2

22

n n
A

!"#   and 2

2

n nu
B

!"#  are the matrices 

of algebraic equations. 1 1

11

ny n
C

!"# , 2 1

21

ny n
C

!"# , 1 2

12

ny n
C

!"# , 2 2

22

ny n
C

!"# , 

1

1

ny nu
D

!"#  and 2

2

ny nu
D

!"#  correspond to observation equations. The vector 
( )2 1
0
n n!

 

represents the residual of algebraic equations. 

When the whole set of observed variables Z Y U= !  is used the new formulation of the 

QSM (3.2) is: 
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The extended system realisation matrix is defined as: 

 

( ) ( )

11

111 1

0

0 0
ny n ny nu

A B A

M C D

C

% %

% %

! !

" #$
% &

= % &
% &
' (

 (3.4) 

 



 

 

 

where M links the extended observations vector, 
( )

( ) ( )
1

1
0 1

nx

T TT
Z k Y k! "= +

# $
T

Z  with 

the extended variables vector ( ) ( ) ( ) ( )1 2 1
1

T T T T

X k X k U k X k! "= +
# $

T
V . The system 

of equations represented by M will be determined if and only if M is full-rank. If the 

system is determined matrix M can be inverted and hence the system can be solved: 

 1
M

!
=VZ  (3.5) 

This condition is equivalent to:  

( ) ( )rank cardM = V               (3.6) 

3.2 Diagnosability analysis using quasi-static models 

Using the QSM of a system, as given by equation (3.4), fault diagnosability analysis is a 

classical linear algebraic problem.  

In general faults are considered as new state variables. Additive faults are unknown 

variables ( nfF !" ) that are not constant but their dynamics are unknown. The faults are 

assumed to be static variables. Model (3.4) can be generalized to dynamic faults if some 

knowledge about their dynamics is known. Multiplicative faults result in a non linear 

model that has to be linearised. 
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The new matrix 1n nf

F
A !"#%  represents the effect of faults on dynamic variables, 

( )2n ny nu nf

F
C

+ + !
"#%  is the matrix corresponding to the effect of faults on static variables 

and observations. Matrix
F
C%  can be decomposed in 

2 1 2

T

F F F F UF
C A C C C% ! ! ! !" #= $ %  

where 2

2

n nf

F
A !"#  is the matrix corresponding to the faults in the algebraic equations.  

1

1

n nf

F
C !"# , 2

2

n nf

F
C !"#  and nu nf

UF
C !"#  represents the effect of faults on 

observations Y1, Y2 and U respectively.  

Defining MF as 
1

T T T T

F F F F
M A C C%%! "= # $ , the extended system realisation matrix where 

faults are included is given by: 

 [ ]FM M=M  (3.8) 

The equation system represented by M  is determined if and only if M  is full-rank. If 

the system is determined, matrix M  can be inverted and hence the system can be 

solved: 

1

F

!" #
=$ %

& '

V
MZ                                                       (3.9) 

Hence all variables can be estimated and consequently the faults can be discriminated 

and identified. This condition is equivalent to:  

 ( ) ( ) ( )rank card card F= +MV  (3.10) 

where F={fi}, i=1,…,nf  is the set of faults. 



 

 

 

Note that this condition guarantees not only full diagnosability for single faults but also 

full diagnosability for multiple faults. 

Assuming that M in (3.4) is full rank and considering only single faults diagnosability, 

the analysis of equation (3.10) can be carried out for each pair of possible faults. If M   

in (3.8) is full rank for all pairs of faults, the diagnosis system is able to decide which 

fault is present. 

ij
M  denotes the extended system realisation including all pairs of faults fi and fj. If 

ij
M  is full rank for all {fi,fj}∈F, that means that if a single fault fk is present, the system 

equations corresponding to 
ik

M : 

 ( )
( )
( )ik

ik

k

F k

! "
= # $

% &
ik

k
V

ZM  (3.11) 

gives a unique solution where 0
i
f =  and kf 0! . For all remaining 

ij
M  where i, j k!  

the possible solutions could be: 

1. both if 0!  and jf 0!  and it is impossible, hence faults are assumed to be 

single.  

2. fi=0 and jf 0!  that means that fj=fk because all 
ij

M  are full rank and a fault 

that implies the same changes in all state variables is the same fault. 

 



 

 

 

3.3 Sensor placement using quasi-static models 

In this section, singular value decomposition of matrix M  is used to solve the sensor 

placement problem [13]. When matrix M  looses rank, a zero singular value is present. 

Singular value decomposition gives a base in the variable space X U F! !  in which  

one direction is related with the minimal singular value.  

 T
=!"#M  (3.12) 

Equation (3.12) corresponds to singular value decomposition, where Σ is a diagonal 

matrix of the same size as M . Its diagonal contains singular values,
l

! , in diminishing 

order, !  and Ψ  are square matrices and their columns form a base of the input and 

output vectorial space respectively. Each 
l

!  is associated to an input direction, 
l
! , and 

an output direction, 
l

! .  
l

!  is the gain between 
l
!  and 

l
!  corresponding to matrix M.  

The direction in the input space associated to minimal singular value shows which 

variables are poorly related with the output space.  It indicates which measurements 

should be introduced to improve diagnosability. Each pair of faults ( )i jf , f  gives a 

subset i j
X X

,
! . Once this study has been done for all pairs of possible faults, sensors 

that have to be introduced are given by the union of all sets obtained for the different 

pairs: 

 { }i j
i j

X X=!* ,

,
 (3.13) 

Then the set of observed variables is given by: 

 
a

Z X Z= !
*  (3.14) 



 

 

 

This methodology allows to place sensors in an optimal way based on the numerical 

behaviour showed by minimal singular value. 

 

4. DIAGNOSABILITY ANALYSIS USING A STRUCTURAL MODEL  

4.1 Structural model 

A structural model is an abstraction of the behaviour model in which every structural 

relation only captures information about which variables are involved in the relation 

[10].  

The behaviour model of a system can be defined as a pair (E,V) where V is a set of 

variables, and  E  is a set of equations or relations. The relations E may be expressed in 

several different forms as algebraic and differential equations, difference equations, 

rules etc. The set of variables V can be partitioned as V X Z= ! , where Z is the set of 

observed variables and X is the set of unknown variables.  

In a component-oriented-model, these relations are associated to the system’s physical 

components, including sensors.  

The abstracted structural model can be represented by an Incidence Matrix which 

crosses model relations in rows and model variables in columns: an entry eij of the 

matrix is 1 when variable vj∈V appears in relation ei∈E, and 0 otherwise.  



 

 

 

4.2 Diagnosability using structural analysis (SA) 

Once the structural model of a system is derived, it can be used to search for the 

analytical redundancies, concretized by the so-called Analytical Redundancy Relations 

(ARRs). ARRs are relations that only contain observed variables and can hence be 

evaluated from the observations [10].  

An ARR is obtained from a redundant relation of the model, and from the relations used 

to solve for the unknown variables involved in the redundant relation. Each ARR can be 

put in the form r=0 and gives rise to a residual r. Residual quantities are zero in the 

absence of faults and each residual acts as an alarm that is expected to trigger to a non-

zero value upon the occurrence of some faults, in which case the residual is said to be 

sensitive to these faults (this may depend on the amplitude of the fault). The set of faults 

that sensibilize an ARR is called the ARR sensitivity fault set.  The expected triggering 

pattern(s) of a set of residuals { }1 nz
r r, ...,  under some fault f hence provides an 

abstracted observation tuple r

f
OBS , or a set of possible abstracted observation tuples in 

the case of a multiple mode system. The signature of the fault f can be defined as 

r

f
Sig f OBS=( )  while r

f
OBS  equivalently represent the original observation subspace 

under the fault f, 
f

OBS  [14]. The fact that a residual r is expected or not to be sensitive 

to a fault can be determined from the structure of the model, and so can be determined 

the fault signatures.  

Fault signatures are summarized in the so-called Fault Signature Matrix (FSM) which 

crosses ARRs in rows and anticipated faults in columns. An entry eij to "1" represents 

that ARRi is sensitive to fault fj and it is expected to be triggered to a non zero value 



 

 

 

under the occurrence of this fault.  

The diagnosability properties of a system depend on fault signatures [14]. In particular, 

a system is strongly diagnosable if and only if for all fi, fj, i jf f! , we have 

i j
Sig f Sig f! ="( ) ( )  [14,15]. 

[14] presents an algorithm to generate the set of all possible structural ARRs  in all 

different conditions of available sensors and in the case when the modelled system has 

multiple operational modes. Each so-called Hypothetic (structural) ARR, so called  H-

ARR, is labelled by the set of sensors required to actually obtain this H-ARR. This set 

of sensors is also called the sensor-support of the H-ARR. The starting point of the 

method hypothesizes that all the variables are sensored and generates the corresponding 

set of H-ARRs that are in this case directly issued from the structural model relations. 

The H-ARR generation algorithm then removes sensors one by one and combines H-

ARRs consequently (removing one sensor comes back to eliminating the H-ARRs 

involving the corresponding observed variable and adding the combined H-ARRs 

obtained by substituting this variable). First a sensor S(xi) corresponding to the 

observation relation zi=ei(xi) is selected, where 
i
x X!  and 

i
z Z! , and a set J of H-

ARR’s indexes is defined as the set of H-ARR in which zi is involved. Then the pairs of 

H-ARRs to be combined are taken in J. Obviously, another sensor is chosen if the 

cardinality of J is equal to 1. 

Two H-ARR selected in the set J can be combined under several conditions exhibited in 

[14]. If all the conditions are fulfilled, then a new H-ARR with its corresponding sensor-

support can be generated. The  whole set of H-ARRs is used to fill the Hypothetical 



 

 

 

Fault Signature Matrix (HFSM) which crosses H-ARRs in rows and anticipated faults 

in columns.  

 

4.3   Sensor placement using structural analysis 

The problem of determining the minimal set of sensors that guarantee a specified level 

of diagnosability is approached in [14], based on the HFSM. A procedure for 

determining the MASSs (Minimal Additional Sensor Sets) is provided. It is based on an 

exhaustive search of all the alternative fault signature matrices, i.e. submatrices of the 

HFSM that correspond to all the alternative possible sensor sets. Some results providing 

bounds for the minimum number of ARRs needed to discriminate a set of faults F and 

the minimum number of sensors required are proposed to restrict the search. 

Following this work, [16] formulates the optimisation problem of determining the 

MASS that achieves a given diagnosability level as an optimise a cost criterion. It 

proposes a method to solve this using an evolutionary approach. Different combinations 

of sensors are codified in the chromosomes of a first population, and then a genetic 

algorithm searches for the most advantageous ones in terms of diagnosability degree 

over cost ratio. 

 

5. APPLICATION 

The QSM and SA methodologies are applied to a real laboratory system, PCS4, 

provided by Festo [12]. 



 

 

 

5.1 Process description 

The system is made up of two tanks interconnected by a pump and a valve (Figure 2). 

There is only one level sensor in the top tank (LT).  

qp(t)

qv(t)

hl(t)

hu(t)
LT

qp(t)

qv(t)

hl(t)

hu(t)
LT

 

Fig. 2. Two-tanks system 

Flow in the pump, qp, depends on both levels, hu and hl, and control input to the pump, 

u1. Flow in the valve, qv, depends on top level, hu, and control input to the valve, u2. 

Equation 5.1 shows the non-linear mathematical equations (E) describing the process 

behaviour. 
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where 
u
S  and l

S  are the sections of the upper and lower tank, respectively. The 

equations given above include differential and algebraic equations.  

Hypothetical faults considered are: the sensor gives a wrong reading of the level; miss 

function of the pump or the valve (wrong flow); leaks in any of the tanks. Table 1 

summarises these hypothetical faults.  

Table 1. Hypothetical faults considered 

Fault Symbol 
Sensor level fault f1 

Pump fault f2 
Valve fault f3 

Up tank  leak f4 

Low tank leak f5 

 

5.2 Quasi-static model for the two-tanks system 

For the two-tanks system we have the following discrete time equations: 
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where slow variables are { }1 u l
X h h= ,  and fast variables are { }2 p v

X q q= , . (5.2) is 

obtained by linealising (5.1), where ai { }1 3i = , ...,  and bj ,{ }1 2j = ,  are known 

parameters and t!  represents the sample period. Discretisation induces the presence of 

two instances of the same slow variables X1 in the same snapshot. 

The set of equations (5.2) is modified in order to introduce the effect of faults (Table 1). 

Four new equations are included, corresponding to measurements and inputs that are 

known. Since the level of the upper tank variable, which the only the measured, appears 

twice in the same snapshot, it generates two observation equations in which faults are 

assumed to be static variables. 
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In equation (5.4), the extended system realisation matrix is used in the case of two 

possible faults: f1 and f2. It is equivalent to equations (5.3) restricted to f1 and f2. 
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In this case, the extended system realisation matrix 
12

M  is of rank 8 because there are 

only 8 equations.  

Applying the methodology described in Section 3.3, Σ has two null singular values. 

These null singular values correspond to the last two vectors of the input vectorial space 

base, ! . 

9 10

0 57 0 00 0 06 0 06 0 57 0 06 0 57 0 00 0 00 0 00

0 00 0 71 0 00 0 00 0 00 0 03 0 00 0 71 0 00 0 00
,

. . . . . . . . . .

. . . . . . . . . .

T!
" " "# $

= % &" " "' (
  

Each value of 
9 10,
!  corresponds to one of the variables in ( ) ( )

T
T T

k F k! "
# $
V . Considering 

only unobserved variables, { }l p v
h q q, , , the maximum values are present in the second 

and eighth components of the vector 
10
! . These components correspond to hl.  

If such sensor is introduced the system improves diagnosability but it is not full rank 

yet, with a minimal singular value of: 



 

 

 

15
4 47. e! "

=  

The new direction related to this minimal singular value is: 

[ ]10
0 57 0 00 0 06 0 06 0 57 0 06 0 57 0 00 0 00 0 00

T! = " " " " " " ". . . . . . . . . .   

The new maximal components, third and fourth, point out exactly the only unobserved 

variables left, qp and qv. Introducing a sensor for one of these variables makes the 

system diagnosable. From the numerical point of view, placing a sensor in qv is better. 

This can be seen comparing minimal singular values for each configuration: 

l v l ph q h q0.0071 ; 0.0006! !" "= =  

Thus the variables subset for this pair of faults can be:  

{ }1,2

l vX h ,q=  or { }1,2

l pX h ,q=  

The same method  is applied for each pair of faults. Table 2 presents the results with all 

combinations related to fault in pump, f2.  

 

Table 2. Results of system diagnosability using 
QSM  
Faults to discern Sensors to add 
f1     f2 hl ∧  (qp ∨ qv)  
f3     f2 hl  ∧  (qp ! qv )                                                                                      
f4     f2 hl 
f5     f2 hl 

 



 

 

 

Variables are ordered by numerical influence and bold symbols indicate the selected 

sensors. The same analysis have  been performed for the six combinations left leading 

to the conclusion that two sensors are enough to make all faults discriminable.  

In the example, two possible sets are obtained for  X*: 

X*
1 = {hl, qv} 

X*
2 = {hl, qp} 

The second combination X*
2, is worse from a numerical point of view. However, the 

decision about which sensors to introduce may also depend on the cost of each sensor. 

 

5.3 Structural Model for the two-tank system 

The methodology described in [14] is now used with the objective to check the results. 

For the case studied, the set of variables and relations are: 

{ }mmumpvlu uuhuuqqhhV 2121 ,,,,,,,,=  and E={e1, e2, e3, e4, e5, e6,  e7}. The equations e5, e6  

and  e7   correspond to sensor relations: 

 e5: uum
hh =  

 e6: 11
uu

m
=  (5.5) 

 e7: 22
uu

m
=  

where  hum, u1m  and  u2m  are measured variables. 



 

 

 

The extended incidence matrix, including the set of hypothetical faults considered above 

{ }1 2 3 4 5F f , f , f , f , f= ,  is given by:  

 

Table 3. Extended Incidence matrix 

 Known variables Unknown variables Faults 

 m
u
1

 
m

u
2

 um
h  l

h  u
h  vq  pq  1

u  
2
u  f1 f2 f3 f4 f5 

e1     1 1 1      1  
e2    1  1 1       1 
e3    1 1  1 1   1    
e4     1 1   1   1   
e5   1  1     1     
e6 1       1       
e7  1       1      

  

The procedure described in 4.2 is applied to obtain the whole set of H-ARRs and fill the 

Hypothetical Fault Signature Matrix (HFSM). Table 4, presents a sub-matrix of the 

HFSM which includes { }l p
h q  as  hypothetical known variables.  

 

Table 4. Hypothetical Analytical Redundant Relations with 
l
h  

and 
pq  as known variables. 

 Known 
Variables 

Hypothetically 
known 

Faults 
HFSM 

 u1m u2m hum hl qp f1 f2 f3 f4 f5 

ARR9 1   1 1  1  1 1 
ARR13  1 1  1 1  1 1  
ARR14 1 1 1 1 1 1 1 1 1  
ARR15  1  1 1   1 1 1 
ARR16  1 1 1  1  1 1 1 
ARR17 1 1 1   1 1 1 1 1 

 



 

 

 

The FSM is given by the fault columns (grey colour in table 4). Faults are discriminable 

if the rank of FSM is equal to the number of faults [11, 14]: 

rank(FSM) = card(F) (5.6) 

We consider the incorporation of two sensors only: pump flow qp, and level of the lower 

tank hl. In this case rank(FSM) = 5 so the five faults are discriminable.  

Applying the same procedure for all possible combinations of hypothetical variables, 

the minimal sets of sensors that guarantee full diagnosability are: 

X*
1 = {hl, qv} 

X*
2 = {hl, qp} 

 

6. CONCLUSION 

In this paper a model based approach for fault diagnosability has been presented. The 

method is based on a state space representation of quasi-static models and is compared 

to a structural model based approach. The QSM methodology has been illustrated 

through its application on a two-tanks system. The case of single fault has been 

considered and the approach gives the same results as the SA method.   

In QSM, an iterative algorithm is needed to achieve the optimal sensor location for full 

diagnosability. The QSM approach needs more information than the SA approach. It is 

based on a linealised model and the knowledge of how the considered anticipated faults 

affect this model.  



 

 

 

The QSM method, on the other hand, provides more information. Different faults on the 

same component can be discriminated and it also indicates which subset of variables is 

most numerically relevant for fault diagnosability.  

The comparative study developed in this article and the obtained results open 

perspectives based on the integration of both approaches which may advantageously 

reduce computational complexity. 
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